March 27 2015

New Article: Phys. Rev. A 91, 033834 (2015)

Interfacing microwave qubits and optical photons via spin ensembles

Susanne Blum, Christopher O'Brien, Nikolai Lauk, Pavel Bushev, Michael Fleischhauer, and Giovanna Morigi
Phys. Rev. A 91, 033834 (2015)

A protocol is discussed which allows one to realize a transducer for single photons between the optical and the microwave frequency range. The transducer is a spin ensemble, where the individual emitters possess both an optical and a magnetic-dipole transition. Reversible frequency conversion is realized by combining optical photon storage, by means of electromagnetically induced transparency, with the controlled switching of the coupling between the magnetic-dipole transition and a superconducting qubit, which is realized by means of a microwave cavity. The efficiency is quantified by the global fidelity for coherently transferring a qubit excitation between a single optical photon and the superconducting qubit. We test various strategies and show that the total efficiency is essentially limited by the optical quantum memory: It can exceed 80% for ensembles of nitrogen-vacancy centers and approaches 99% for cold atomic ensemble, assuming state-of-the-art experimental parameters. This protocol allows one to bridge the gap between the optical and the microwave regime in order to efficiently combine superconducting and optical components in quantum networks.



back to overview of all news