May 06 2011

New article: Phys. Rev. A 83, 051602(R)

Quantum-noise quenching in atomic tweezers
S. Zippilli, B. Mohring, E. Lutz, G. Morigi, W. Schleich
Phys. Rev. A 83, 051602(R) (2011)

The efficiency of extracting single atoms or molecules from an ultracold bosonic reservoir is theoretically investigated for a protocol based on lasers, coupling the hyperfine state in which the atoms form a condensate to another stable state, in which the atom experiences a tight potential in the regime of collisional blockade, the quantum tweezers. The transfer efficiency into the single-atom ground state of the tight trap is fundamentally limited by the collective modes of the condensate, which are thermally and dynamically excited. The noise due to these excitations can be quenched for sufficiently long laser pulses, thereby achieving high efficiencies. These results show that this protocol can be applied to initializing a quantum register based on tweezer traps for neutral atoms.



back to overview of all news