Exercise 12 Photons with circular polarization
Consider the two modes at wave vector \(k \) and linear polarizations \(\epsilon_1 \) and \(\epsilon_2 \), such that \(k \cdot \epsilon_1 = k \cdot \epsilon_2 = \epsilon_1 \cdot \epsilon_2 = 1 \).
The energy is \(\hat{H} = \hbar \omega (\hat{a}_1^\dagger a_1 + \hat{a}_2^\dagger a_2) \) where \(\omega = c|k| \) and \(a_j \) is the annihilation operator of a photon with wave-vector \(k \) and polarization \(\epsilon_j \), satisfying the commutation relation
\[
[\hat{a}_i, \hat{a}_j^\dagger] = \delta_{ij}.
\] (1)

a) Take the modes with circular polarization
\[
\hat{a}_+ = -\frac{\hat{a}_1 + i\hat{a}_2}{\sqrt{2}}, \\
\hat{a}_- = \frac{\hat{a}_1 - i\hat{a}_2}{\sqrt{2}}
\] (2)
show that
\[
[\hat{a}_\pm, \hat{a}_\pm^\dagger] = 1, \\
[\hat{a}_\mp, \hat{a}_\mp^\dagger] = 0,
\] (3)
and the Hamiltonian can be rewritten as \(\hat{H} = \hbar \omega (\hat{a}_+^\dagger a_+ + \hat{a}_-^\dagger a_-) \). (1 Point)
b) Perform an infinitesimal rotation about \(k \) of \(\delta \phi \ll 1 \). Write \(\epsilon_1', \epsilon_2' \) and show that \(\delta \epsilon'_\pm = \mp i\delta \phi \epsilon_\pm \), where \(\delta \epsilon'_\pm = \epsilon'_\pm - \epsilon_\pm \) therefore the photon with \(\epsilon_\pm \) has spin component \(\pm \hbar \). (1 Point)
c) Discuss why the chemical potential of the photons is zero. (1 Point)

Exercise 13 Properties of the gamma matrices
The Dirac-Hamiltonian operator is given by
\[
\hat{H} = c \alpha \cdot p + \alpha_t mc^2
\] (4)
with \(\alpha_\mu = (\alpha_x, \alpha_y, \alpha_z, \alpha_t) \). It holds that \(\alpha_\mu^\dagger = \alpha_\mu \), \(\text{Tr} \{ \alpha_\mu \} = 0 \) as well as \(\{ \alpha_\mu, \alpha_\nu \} = 2 \delta_{\mu \nu} \), with the anticommutator defined as \(\{ A, B \} = AB + BA \). Beside, the Dirac Equation in the van-der-Waerden-Form is given by
\[
\left(\gamma_\mu \frac{\partial}{\partial x_\mu} + \frac{mc}{\hbar} \right) \psi(\vec{x}, t) = 0,
\] (5)
where the \(\gamma \)-matrices are defined as \(\gamma_j = -i \alpha_t \alpha_j \) for \(j = 1, 2, 3 \) and \(\gamma_4 = \alpha_t \). Show the following properties, without explicitly writing the gamma matrices:
1. the anticommutators \(\{ \gamma_\mu, \gamma_\nu \} = 2 \delta_{\mu\nu} \) hold,
2. the \(\gamma_\mu \) are hermitian,
3. the trace of the \(\gamma_\mu \) vanishes.