Question 1

a) In a two-level system the transition between the ground state \(|g\rangle \) and the excited state \(|e\rangle \) has the transition frequency \(\omega_0 \).

Exactly solve the Schrödinger equation

\[
i\hbar \frac{\partial}{\partial t} |\psi_t\rangle = H |\psi_t\rangle \tag{1}
\]

with

\[
|\psi_0\rangle = \alpha(0) |g\rangle + \beta(0) |e\rangle, \quad |\alpha(t)|^2 + |\beta(t)|^2 = 1
\]

and

\[
H = -\frac{\hbar \gamma}{2} \sigma_z + \hbar \Omega (\sigma^+ + \sigma^-) \tag{2}
\]

where \(\gamma = \omega - \omega_0 \).

(1 Point)

b) Solve the Schrödinger equation using perturbation theory to first order when \(|\psi_0\rangle = |g\rangle \).

(1 Point)

Question 2

Assume that a third level \(|i\rangle \) at frequency \(\omega_1 > \omega_0 \) can be coupled to state \(|g\rangle \) via radiation. Starting from

\[
H = \hbar \omega_0 |e\rangle \langle e| + \hbar \omega_1 |i\rangle \langle i|
\]

\[
+ \hbar \Omega (|e\rangle \langle g| e^{-i\omega t} + |g\rangle \langle e| e^{i\omega t}) \tag{4}
\]

\[
+ \hbar \Omega' (|i\rangle \langle g| e^{-i\omega t} + |g\rangle \langle i| e^{i\omega t}) \tag{5}
\]

a) Find the representation in which the Hamiltonian is time independent.

(1 Point)

b) Determine the condition under which the coupling to level \(|i\rangle \) can be neglected and the system can be reduced to two levels.

(1 Point)
Question 3

Consider the dynamics of the density matrix for Question 1

\[\frac{\partial \rho}{\partial t} = \frac{1}{i\hbar}[H, \rho] + \Gamma(\sigma \rho \sigma^+ - \frac{1}{2}\sigma^+ \sigma \rho - \frac{1}{2}\sigma \rho \sigma^+) \]

(6)

where \(\Gamma > 0 \) and

\[H = \frac{\hbar \omega_0}{2} \sigma_z + \hbar \Omega(e^{-i\omega t} + e^{i\omega t}) \cdot \sigma \]

(7)

a) Determine the form of the master equation when \(H \) is moved to the reference frame which is time independent.

(1 Point)

b) Write the optical Bloch equation

(0.5 Point)

c) Solve the optical Bloch equations for

\[\rho_0 = \left(\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array} \right) ; \ \Omega = 0 \]

Determine \(\text{Tr}\{\rho^2\} \) as a function of time.

(0.5 Point)

d) Solve the optical Bloch equations for \(\Gamma = 0, \ \Omega > 0, \ \Delta > 0 \) and

\[\rho_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \]

Determine \(\text{Tr}\{\rho^2\} \) as a function of time.

(0.5 Point)

Question 4

Show that for a two-level system \(\rho = \frac{1}{2}(1_2 + \bar{U} \cdot \bar{\sigma}) \) with

\[\bar{\sigma} = (\sigma_x, \sigma_y, \sigma_z) \]

(8)

and

\[\bar{U} = (U_x, U_y, U_z) \]

(9)

is a real vector \(\bar{U} \in \mathbb{R}^3 \).

Show that there is positive semi-definiteness when \(|\bar{U}| \leq 1 \). (hint: evaluate the eigenvalues of the density matrix)

(1 Point)